Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Vaccines (Basel) ; 10(12)2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2163726

ABSTRACT

The quantification of neutralising antibodies (NAb) for SARS-CoV-2 has become an important tool for monitoring protective immunity following infection or immunisation. In this study, we evaluated using World-Health-Organisation-standard immunoglobulin preparations, a novel point-of-care test that quantitates NAb by time-resolved fluorescent immunoassay. The assay provided robust data of binding antibody units (BAU) in 15 min that were well correlated with NAb values obtained by traditional in vitro neutralisation assay. The data also correlated well to spike-receptor-binding domain-binding antibodies over a broad range of plasma dilutions. The assay was extremely sensitive, able to detect positive samples after dilution 1:10,000 and over a wide range of BAU. Assay specificity was estimated at 96% using Pre-COVID-19 serum samples when applying a cut-off value of 47 BAU/mL, although readings of up to 100 BAU/mL could be considered borderline. This point-of-care diagnostic test is useful for rapid population screening and includes the use of capillary blood samples. Furthermore, it provides results for SARS-CoV-2 NAb in 15 min, which can inform immediate decisions regarding protective immunity levels and the need for continued COVID immunisations.

2.
BMJ Glob Health ; 7(3)2022 03.
Article in English | MEDLINE | ID: covidwho-1738697
3.
Antibiotics (Basel) ; 10(7)2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1295741

ABSTRACT

COVID-19 is a pandemic disease caused by the SARS-CoV-2, which continues to cause global health and economic problems since emerging in China in late 2019. Until now, there are no standard antiviral treatments. Thus, several strategies were adopted to minimize virus transmission, such as social distancing, face covering protection and hand hygiene. Rhamnolipids are glycolipids produced formally by Pseudomonas aeruginosa and as biosurfactants, they were shown to have broad antimicrobial activity. In this study, we investigated the antimicrobial activity of rhamnolipids against selected multidrug resistant bacteria and SARS-CoV-2. Rhamnolipids were produced by growing Pseudomonas aeruginosa strain LeS3 in a new medium formulated from chicken carcass soup. The isolated rhamnolipids were characterized for their molecular composition, formulated into nano-micelles, and the antibacterial activity of the nano-micelles was demonstrated in vitro against both Gram-negative and Gram-positive drug resistant bacteria. In silico studies docking rhamnolipids to structural and non-structural proteins of SARS-CoV-2 was also performed. We demonstrated the efficient and specific interaction of rhamnolipids with the active sites of these proteins. Additionally, the computational studies suggested that rhamnolipids have membrane permeability activity. Thus, the obtained results indicate that SARS-CoV-2 could be another target of rhamnolipids and could find utility in the fight against COVID-19, a future perspective to be considered.

4.
Clin Transl Immunology ; 9(12): e1227, 2020.
Article in English | MEDLINE | ID: covidwho-1037499

ABSTRACT

OBJECTIVES: Bacillus Calmette-Guérin (BCG) vaccination has been implicated in protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and as a non-specific immunisation method against the virus. We therefore decided to investigate T-cell and B-cell epitopes within the BCG-Pasteur strain proteome for similarity to immunogenic peptides of SARS-CoV-2. METHODS: We used NetMHC 4.0 and BepiPred 2.0 epitope prediction methods for the analysis of the BCG-Pasteur proteome to identify similar peptides to established and novel SARS-CoV-2 T-cell and B-cell epitopes. RESULTS: We found 112 BCG MHC-I-restricted T-cell epitopes similar to MHC-I-restricted T-cell SARS-CoV-2 epitopes and 690 BCG B-cell epitopes similar to SARS-CoV-2 B-cell epitopes. The SARS-CoV-2 T-cell epitopes represented 16 SARS-CoV-2 proteins, and the SARS-CoV-2 B-cell epitopes represented 5 SARS-CoV-2 proteins, including the receptor binding domain of the spike glycoprotein. CONCLUSION: Altogether, our results provide a mechanistic basis for the potential cross-reactive adaptive immunity that may exist between the two microorganisms.

5.
Curr Genet Med Rep ; 9(1): 1-12, 2021.
Article in English | MEDLINE | ID: covidwho-1033243

ABSTRACT

PURPOSE OF REVIEW: SARS-CoV-2, the recently emerged coronavirus (CoV) that is responsible for the current global pandemic Covid-19, first appeared in late 2019 in Wuhan, China. Here, we summarise details of the SARS-CoV-2 genome to assist understanding of the emergence, evolution and diagnosis of this deadly new virus. RECENT FINDINGS: Based on high similarities in the genome sequences, the virus is thought to have arisen from SARS-like CoVs in bats but the lack of an intermediate species containing a CoV with even greater similarity has so far eluded discovery. The critical determinant of the SARS-CoV-2 genome is the spike (S) gene encoding the viral structural protein that interacts with the host cell entry receptor ACE2. The S protein is sufficiently adapted to bind human ACE2 much more readily than SARS-CoV, the most closely related human CoV. SUMMARY: Although the SARS-CoV-2 genome is undergoing subtle evolution in humans through mutation that may enhance transmission, there is limited evidence for attenuation that might weaken the virus. It is also still unclear as to the events that led to the virus' emergence from bats. Importantly, current diagnosis requires specific recognition and amplification of the SARS-CoV-2 RNA genome by qPCR, despite these ongoing viral genome changes. Alternative diagnostic procedures relying on immunoassay are becoming more prevalent.

6.
Int J Pharm ; 589: 119826, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-733806

ABSTRACT

Viral infections represent 44% of newly emerging infections, and as is shown by the COVID-19 outbreak constitute a major risk to human health and wellbeing. Although there are many efficient antiviral agents, they still have drawbacks such as development of virus resistance and accumulation within off-target organs. Encapsulation of antiviral agents into nanoparticles (NPs) has been shown to improve bioavailability, control release, and reduce side effects. However, there is little quantitative understanding of how the uptake of NPs into virally infected cells compares to uninfected cells. In this work, the uptake of fluorescently labeled polymer NPs was investigated in several models of rhinovirus (RV) infected cells. Different multiplicities of RV infections (MOI) and timings of NPs uptake were also investigated. In some cases, RV infection resulted in a significant increase of NPs uptake, but this was not universally noted. For HeLa cells, RV-A16 and RV-A01 infection elevated NPs uptake upon increasing the incubation time, whereas at later timepoints (6 h) a reduced uptake was noted with RV-A01 infection (owing to decreased cell viability). Beas-2B cells exhibited more complex trends: decreases in NPs uptake (cf. uninfected cells) were observed at short incubation times following RV-A01 and RV-A16 infection. At later incubation times (4 h), we found a marked decrease of NPs uptake for RV-A01 infected cells but an increase in uptake with RV-A16 infected cells. Where increases in NPs uptake were found, they were very modest compared to results previously reported for a hepatitis C/ Huh7.5 cell line model. An increase in RV dose (MOI) was not associated with any notable change of NPs uptake. We argue that the diverse endocytic pathways among the different cell lines, together with changes in virus nature, size, and entry mechanism are responsible for these differences. These findings suggest that NPs entry into virally infected cells is a complex process, and further work is required to unravel the different factors which govern this. Undertaking this additional research will be crucial to develop potent nanomedicines for the delivery of antiviral agents.


Subject(s)
Nanoparticles/administration & dosage , Picornaviridae Infections/metabolism , Polyesters/administration & dosage , Rhinovirus , Cell Line , Cell Survival/drug effects , DNA, Viral , Endocytosis , Genome, Viral , Humans , Rhinovirus/genetics
7.
Eur J Pharm Sci ; 153: 105465, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-639701

ABSTRACT

COVID-19, is a disease resulting from the SARS-CoV-2 global pandemic. Due to the current global emergency and the length of time required to develop specific antiviral agent(s) and a vaccine for SARS-CoV-2, the world health organization (WHO) adopted the strategy of repurposing existing medications to treat COVID-19. Iron oxide nanoparticles (IONPs) were previously approved by the US food and drug administration (FDA) for anemia treatment and studies have also demonstrated its antiviral activity in vitro. Therefore, we performed a docking study to explore the interaction of IONPs (Fe2O3 and Fe3O4) with the spike protein receptor binding domain (S1-RBD) of SARS-CoV-2 that is required for virus attachment to the host cell receptors. A similar docking analysis was also performed with hepatitis C virus (HCV) glycoproteins E1 and E2. These studies revealed that both Fe2O3 and Fe3O4 interacted efficiently with the SARS-CoV-2 S1-RBD and to HCV glycoproteins, E1 and E2. Fe3O4 formed a more stable complex with S1-RBD whereas Fe2O3 favored HCV E1 and E2. These interactions of IONPs are expected to be associated with viral proteins conformational changes and hence, viral inactivation. Therefore, we recommend FDA-approved-IONPs to proceed for COVID-19 treatment clinical trials.


Subject(s)
Coronavirus Infections/drug therapy , Ferric Compounds/therapeutic use , Metal Nanoparticles/therapeutic use , Molecular Docking Simulation , Pneumonia, Viral/drug therapy , COVID-19 , Drug Approval , Drug Repositioning , Humans , Pandemics , Protein Conformation , Spike Glycoprotein, Coronavirus/drug effects , United States , United States Food and Drug Administration , Viral Envelope Proteins/drug effects , Viral Envelope Proteins/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL